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OF REVOLUTION 

Questions of the passage of axi~mmetric into nona~~mmetric eq~librium 

modes are investigated for shallow shells of revolution. Diverse modifications 
of the method of factorization are analyzed in application to the problems under 

consideration. Results of computations for spherical and conical shells are pre- 

sented as an illustration. 
The investigation of the nonaxi- 

symmetric stability problem of shal- 
low spherical shells of revolution with 

rigidly clamped supporting contour, 

loaded by an external hydrostatic 

pressure was started in [l] by using 

the Bubnov-Galerkin method. Later 

Fig. 1 

analogous investigations were carried 

out by energy methods in 12, 3]( *). 
Corresponding results of the depend- 

ences of the critical loads qT on the 
shallowness parameter b are represented in Fig. 1 by curves 2 and 3, Curve 1 
determines the parameter of the critical load obtained by solving the axisym- 

metric problem. 

The first investigation of the problem by a numerical method was carriedout 

in [4]. In contrast to [l - 31. it was considered that the shell equilibrium mode 
is axisymmeaic in the first stage, and the uniqueness condition is violated when 

the load reaches some limiting level, and then nonaxisymmetric equilibrium 

modes appear together with the axisymmetric modes. The results obtained are 

represented by curve 4 in Fig, 1. Analogous investigations were later carried 

out by finite differences (curve 5) in [S]. An iteration algorithm [S] was hence 

used to determine the principal state of stress. Despite the identical formulations 
of the problem and the equivalence of the governing equations. the final results 
of [4, 53 differ substantially. They do not even agree with the results in [2. 31. 
Analogous investigations were carried out on the basis of another numerical al- 
gorithm in 171. The results in [5, 71 agree to 6% accuracy for small values of 6; 
they are examined in [7]. 

Shells with different edge conditions for the supporting contour were investi- 

gated in 181. The axisymmenic problem was solved on the basis of a numerical 

* ) References to [3, 43 and their results are borrowed from [5]. 
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algorithm providing for the reduction of the nonlinear boundary value problem 
to a system of nonlinear algebraic equations [9]. The equations determining 
the nonaxisymmetric solutions were integrated numerically by the initial para- 

meters method. Values of the aitical loads for shells with rigidly clamped sup- 

porting contour, obtained in [5, 81, do not agree. The difference between the 

results of solving the nonaxisymmetric problems, which does not exceed 2 - 3%, 

is explained by the diverse values of the Poisson’s ratio. The difference in the 

critical load values q+ for the nom&symmetric problems, which refers prima- 

rily to shells with large values of the parameter b , is more essential. Thus, for 

example,itreaches4.2% for b = 11, This is explained by the fact that for large 

b the algorithm in [S] does not permit exact determination of the position of 

the limit points. Hence, values of the critical load are presented to the accuracy 

of the first two significant figures for b > 9 in the paper mentioned. Similar 

difficulties are characteristic for many existing algorithms. For example, con- 

vergent processes could not be constructed successfully for b >, b. in [lo]. The 

limit value b. depends essentially on the nature of the conditions of the support- 

ing contour. The algorithm of [9] has no such disadvantage. 

The investigation of nonaxisymmetric problems is of interest precisely for 
shells with large values of b. For such shells the solution of the axisymmetric 

problems, whose results are used directly in the analysis of the nonaxisymmenic 

problems, is fraught with considerable dif~culties* They are overcome in this 

paper by using the algorithm of [9] in combination with the method of dividing 

the segment of integration into intermediate segments [IO]. The difficulties 

associated with the rapid growth of the solution for the nonaxisymmetric prob- 

lems are overcome by using diverse factorization methods 111 - 151. 

Let us consider an arbitrary shallow shell of revo- 
lution with variable thickness h along the meridian, 

whose temperature t varies along the thickness and 
along the meridian, The material characteristics 
Ei, G, vi, ~4, the elastic moduli of the first 

and second kinds, the Poisson’s ratio and coefficient 

of linear expansion in the meridian (i = 1) and 

circumferential (i = 2) directions, vary along the 

meridian. 

Fig. 2 

The strains and the changes in curvature are ex- 

pressed in terms of the displacement vector compo- 

nent u (see Fig. 2) by using the relationships [ 143 
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Expressions for the stress resultants and moments 
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follow from the general statements of shell theory and the linear elasticity relationships. 

Let us write the equilibrium equations neglecting transverse forces in the first two 

of them, as is customary for shallow shells [14] 
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We introduce the following computational parameters 

where E,, h,, are the characteristic elastic modulus and thickness, respectively, I<,, 

is the radius of curvature of the supporting contour in the c~cumferential direction, and 
c is the radius of the supporting contour. (The asterisk will henceforth be omitted in the 
notation). 
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Let us transform (1) - (3) by taking account of (4). We hence obtain 

(5) 

The prime here denotes the derivative with respect to r, and the dot the derivative with 
respect to fl. 

An axisymmetric equilibrium mode corresponds to the initial unperturbed state. The 
functions governing it depend only on r, are denoted by the zero superscript, and are 
determined by the solution of the system (5) which it is expedient to reduce to the form 

The constant A 0 is determined from the equilibrium condition for the central part of 



tbe shell. In particular, for an external hydrostatic pressure q = cons& 

& = -r [A2 + F) NllC - 2qr 

The perturbed state characterized by small deviations from the initial equilibrium mode 

is representable as 

Substituting (7) into the system (5) and linearizing, taking account of the smallness of 

z, , results in a system of equations whose solution is 

As a result of manipulations, we obtain a system of equations for each number k (we 

omit the subscript in the notation) 

Two exceptional cases should be considered separately. For k = 0 we have J$ 
.1‘s ; 0. If only normal components of the inertial forces are taken into account, then 
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Xtl = --x5 holds for k = 1 . If inertial forces are not taken into account at all, the 

stability problem, for example, is solved in the static formulation, then for k - 1 the 
seventh equation of the system can be reduced to the form 

Nn” 
x, = - 7 x3 

The order of the system is reduced in the cases noted. In the general case (k > 2) the 

system (8) can be written as 
X’ = AX (10) 

where _X is a column-vector with coordinates 2, and A is a square matrix of dimen- 

sionality 8 x 8. 

The problem on the passage of the axisymmetric equilibrium modes into nonaxisym- 
metric modes consists of determining the matrix A for which the system (10) has a non- 

trivial as well as trivial solution. The matrix itself depends on the load parameter, the 

temperature and the frequency. Therefore, the problem of determining the eigennum- 

bers and eigenvectors of the linear differential operator (10) is solved in substance. 

In carrying out the investigations let us first solve the nonlinear boundary value prob- 

lem for the system (6) by using the algorithm [9]. Difficulties originate for shells with 

large values of the parameter b because of the presence of growing solutions, Hence, 

the algorithm is used in combination with the method of dividing the integration seg- 

ment into intermediate segments. 

The integration segment [A, b] was divided into four parts for the numerical realixa- 

tion of the algorithm. Continuity conditions for the governing functions at the division 

points and the boundary conditions were hence used. Consequently, the nonlinear bound- 

ary value problem was reduced to a system of 14 nonlinear algebraic equations with the 

same number of unknowns. The results obtained were used in parallel integration of the 

system (6) and (10) to establish the critical values of the parameters. 
Let us examine different methods of integrating the system (10) applied to shells closed 

at the vertex. For unclosed shells the method is altered insignificantly because of the 
other initial conditions, 

Integration of (10) can be accomplished by the method of initial parameters. To do 
this we represent the vector X and the matrix A in the form 

Here X, is the displacement vector, X2 is the stress resultant vector, and n ij are mat- 

rices of rank 4x4, 

For r : 0 there is a singularity, hence, integration of the system (10) is realizable 

from a point close to the vertex r =- A. In the eighborhood of F E [O, A] we have 

X 1 z 0. Hence, we obtain four linearly independent solutions of the system by taking 
the following initial values of the vectors (12) 

‘0’ ‘1’ n 

Xl”(A) = ; , X2 (A) = : , X2 (A) = :, , 
0 0 0 

(n _ 1,2, 3,h) 



The general solution of the system is 4 

From the boundary condition of the supporting contour we obtain four linear homoge- 
neous algebraic equations in C, for r = b which for shells with rigidly clamped sup- 

porting contour are of the form 4 

2 C,Xln (6) = 0 

The system (12) has a nontrivial solution if the condition 

1 xc (b) X,” (b) Xl3 (6) Xl4 (b) 1 = 0 
is satisfied. This condition determines the critical values of the load, the temperatures 
or the frequency of the natural system vibrations for a shell with rigidly clamped support- 

ing contour. For other kinds of support of the contour,the condition is formualted analogously. 

Therefore, a solution of the problem for spherical and conical shells has been obtained 

successfully for b < 10 - 12 and h- < 10 - 12. For large b difficulties arise in the 

integration because of the presence of growing solutions and, what is mote serious, be- 

cause the vectors X” become almost linearly dependent during the integration. These 

difficulties are overcome by partitioning the integration segment into ~tz intermediate 

segments, by orthonormalizing the vectors obtained at these points, and by using the re- 

sults as initial values to continue the integration into the next segment [ 111. 
As b and k increase, m grows abruptly. Thus, it is sufficient to take n = 5 - 10 for 

b = 18 and k =13-18,while we need r’l = 160-320 for b = 42 and k =35-50. 

For an extreme increase in m there is the danger of a loss in accuracy. Hence, verifica- 

tion of the results by other methods is necessary. 

Because of the linearity of the problem the condition (the asterisk denotes the trans- 

pose) B*X =- 0 (14) 

is satisfied for the stress resultant and displacement vectors. Here B* is a rectangular 

matrix of the dimensiona~~ 8 x4. For the transpose matrix B the differential equa- 

tion is (133 
3’ = B (B*B)-lB*A*B - A*B (15) 

It can be proved that 
B*B = const (1’3) 

Condition (16) indicates the expediency of integrating (15) instead of the initial system 

(10). For shells closed at the vertex, by vittue of (12), we have 

0 1 n 0 0 0 0 0 
R* (A) = 

0 0 1 0 0 0 0 0 

0 0 0 I 0 0 n 0 j 

(17) 

If (16) and (17) are taken into account, then (15) is written as 

B’ = BR*A*B - A*R (13) 

Therefore, we have the initial condition (17) for the matrix equation (18). To formulate 
the conditions on the supporting contour, let us represent the matrix B* as 
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B* = (B1*B,*) 

where B,* and B,* are square matrices of dimensionality 4x4. It follows from the 

relationships (11) and (14) that 
BI*XI + Bz*X:! = o 

The condition for the existence of a nontrivial solution is written as B2* (b) = (3 for 

shells with a rigidly clamped contour. The conditions for the other kinds of contour sup- 
port are analogous (difficulties in realization of the algorithm do not arise). The quest- 

ion of finding the eigenvectors corresponding to the eigennumbers found for the operator 

(10) is solved simply and is hence not discussed. 
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The problem of passing from the axisymmetric to the nonaxisymmenic equilibrium 

modes has been examined for isotropic spherical and conical constant-thinness shells 

subjected to a constant-intensity external pressure. Graphs of the dependence of the cri- 

tical load parameter (i’ on the shallowness parameter 6 are represented in Fig. 3 for 

spherical and in Fig. 4 for conical shells. The continuous lines have been constructed 

from the results of solving the axisymmetric problem, while the dashes determine the 

value of the minimal critical load corresponding to the passage from axisymmetric over 

to nona~~mmeuic eq~librium modes. For shells with different boundary conditions 

for the supporting contour the following numbering is taken : moving hinge is Problem 1, 
fixed hinge is Problem 2, moving clamping is Problem 3, and rigid clamping is Problem 

4. The numerical values of q’ for spherical shells are presented in Table 1. 

For small values of the shallowness parameter b < 0, up to buckling, axisymmetric 
eq~~brium modes are realized. However, for 0 > 0, the axisymmenic eq~librium 

modes are not unique and nonaxisymmetric modes are possible. The limit value of the 

parameter 0 = 6, depends on the geometry of the middle surface and the nature of 

the boundary of the shell supporting contonr. This is easy to conceive if it is taken into 
account that the reason for the displacement of the equilibrium mode is the high level 

of the circumferential compressive stress resultants at the supporting contonr, which de- 
pends primarily on the factors mentioned above. The nature of fixing the sup~rting con- 
tour strongly affects the value of the critical load. 

As the parameter b increases for a spherical shell with a moving supporting contour 

(Problems 1 and 3), the critical load q* diminishes approximately 1. s-fold for large b 

Another picture is observed for shells with a fixed supporting contour (Problems 2 and 4) 

for which the critical load is practically constant for large b . For such shells the solu- 

tion of the axisymmetric problem yields an exaggerated value (approximately 1. S-fold) 

of the critical load. 
The picture observed for conical shells is different. As the parameter 6 increases the 

critical load diminishes (Fig.4) for all kinds of conditions considered for the supporting 
contour. Thus, for example, for a shell with a rigidly clamped supporting contour and a 

shallowness parameter b = 30 taking account of the nonaxisymmetric modes results in 

an approximately sevenfold reduction in q* . 
As b increases the number of the harmonic k, to which the minimum critical load 

corresponds also increases. However, an approximately constant value I, = 2rcb/k+ is 

Fig. 5 
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established, i, e. some limit wavelength of the buckling mode exists for which the cri- 
tical load is minimal, For large 6 close harmonics have approximately identical values 
of I+, hence, the minimal critical load can be realized simultaneously for several har- 

monics. 
The buckling modes of shells with a rigidly clamped supporting contour are presented 

in Fig. 5; by solid lines for spherical shells for k = k+ and by dashes for conicalshells 

(5s is the parameter of the nonaxisymmetric component of the normal displacement, and 
d= T- @. An analogous picture holds for shells with other boundary conditions for the 

supporting contour. 
The equi~brium modes realized for minimal critical loads for spherical shells are 

distinct only for small values of 6, while they practically agree for large values of b , 

They are independent of k+ (as has already been remarked, the critical load can be 

realized for several numbers of the harmonics). The edge effect zone is slight with the 

exception of shells with a moving supporting contour. 
A different picture is observed for conical shells for which the edge effect zone is 

large, as a rule, independently of the boundary condition for the supporting contour, If 

the minimal critical load hence holds for several values of k+ , then the corresponding 

equilibrium modes differ, but insignificantly. 
Free vibrations of spherical shells under finite displacements have been investigated 

by numerical methods in [16]. 
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The parameters of stationary forced nonlinear vibrations are determined within 

the framework of correlation theory for shells considered as a system with one 

degree of freedom and subjected to a transverse pressure which is random in time. 

The generalized force is described as a stationary normal process with a rational 

fraction spectral density. 

The stability of the solutions found is verified by the perturbed motion equa- 
tion in a linear approximation. The system is first reduced to a Markov type by 

extension of the phase space. Then the Liapunov theorem on stability in a linear 

approximation is applied to the set of first and second order moment functions. 

The final stage in the problem is executed by numerical methods. 

It is disclosed that there are unstable solutions in some domain of the parame- 
ter space. Jump-like transitions from some stable states to others are observed 

for systems with comparatively large nonlinearity. 
Characteristic kinds of deterministic loadings have been investigated in [ l- 

41. For essentially nonlinear systems the curves of the states have sections cor- 
responding to unstable motions. 

Stationary forced vibrations of shells under random loads have been examined 

in a number of papers [S-7]. Investigations conducted within the framework of 
the correlation approximation often yield ambiguous solutions and the question of 
what motions are realized, remains open. 

The main purpose herein is to extract those of the solutions which correspond 
to the unstable vibrations, and thereby determine the actual shell behavior more 
accurately. 


